211 research outputs found

    Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?

    Get PDF
    Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospectively analysed from 396 consecutive patients. The mean stiffness values were obtained using the Aixplorer(®) ultrasound machine from SuperSonic Imagine Ltd. Measurements were taken from a region of interest positioned over the stiffest part of the abnormality. The average of the mean stiffness value obtained from each of two orthogonal image planes was used for analysis. Associations between lymph node involvement and mean lesion stiffness, invasive cancer size, histologic grade, tumour type, ER expression, HER-2 status and vascular invasion were assessed using univariate and multivariate logistic regression. At univariate analysis, invasive size, histologic grade, HER-2 status, vascular invasion, tumour type and mean stiffness were significantly associated with nodal involvement. Nodal involvement rates ranged from 7 % for tumours with mean stiffness <50 kPa to 41 % for tumours with a mean stiffness of >150 kPa. At multivariate analysis, invasive size, tumour type, vascular invasion, and mean stiffness maintained independent significance. Mean stiffness at SWE is an independent predictor of lymph node metastasis and thus can confer prognostic information additional to that provided by conventional preoperative tumour assessment and staging

    SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer

    Get PDF
    Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer

    Distinctions in gastric cancer gene expression signatures derived from laser capture microdissection versus histologic macrodissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric cancer samples obtained by histologic macrodissection contain a relatively high stromal content that may significantly influence gene expression profiles. Differences between the gene expression signature derived from macrodissected gastric cancer samples and the signature obtained from isolated gastric cancer epithelial cells from the same biopsies using laser-capture microdissection (LCM) were evaluated for their potential experimental biases.</p> <p>Methods</p> <p>RNA was isolated from frozen tissue samples of gastric cancer biopsies from 20 patients using both histologic macrodissection and LCM techniques. RNA from LCM was subject to an additional round of T7 RNA amplification. Expression profiling was performed using Affymetrix HG-U133A arrays. Genes identified in the expression signatures from each tissue processing method were compared to the set of genes contained within chromosomal regions found to harbor copy number aberrations in the tumor samples by array CGH and to proteins previously identified as being overexpressed in gastric cancer.</p> <p>Results</p> <p>Genes shown to have increased copy number in gastric cancer were also found to be overexpressed in samples obtained by macrodissection (LS <it>P </it>value < 10<sup>-5</sup>), but not in array data generated using microdissection. A set of 58 previously identified genes overexpressed in gastric cancer was also enriched in the gene signature identified by macrodissection (LS <it>P </it>< 10<sup>-5</sup>), but not in the signature identified by microdissection (LS <it>P </it>= 0.013). In contrast, 66 genes previously reported to be underexpressed in gastric cancer were enriched in the gene signature identified by microdissection (LS <it>P </it>< 10<sup>-5</sup>), but not in the signature identified by macrodissection (LS <it>P </it>= 0.89).</p> <p>Conclusions</p> <p>The tumor sampling technique biases the microarray results. LCM may be a more sensitive collection and processing method for the identification of potential tumor suppressor gene candidates in gastric cancer using expression profiling.</p

    A taxonomy of epithelial human cancer and their metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination.</p> <p>Methods</p> <p>We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures.</p> <p>Results</p> <p>Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the remaining tumors cluster with the tissue of destination.</p> <p>Conclusion</p> <p>Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific profile.</p

    Pancreatic Ductal Adenocarcinoma Associated with Autoimmune Pancreatitis

    Get PDF
    Autoimmune pancreatitis (AIP), in contrast to other benign chronic pancreatic diseases, can be cured with immunosuppressant drugs, thus the differentiation of AIP from pancreatic cancer is of particular interest in clinical practice. There is the possibility that some patients with AIP may develop pancreatic cancer, and this possibility contributes to increasing our difficulties in differentiating AIP from pancreatic cancer. We herein report the case of a 70-year-old man in whom pancreatic adenocarcinoma and AIP were detected simultaneously. We must carefully monitor AIP patients for the simultaneous presence of pancreatic cancer, even when a diagnosis of AIP is confirmed

    Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment

    Get PDF
    Cancer cells show a broad spectrum of bioenergetic states, with some cells using aerobic glycolysis while others rely on oxidative phosphorylation as their main source of energy. In addition, there is mounting evidence that metabolic coupling occurs in aggressive tumors, between epithelial cancer cells and the stromal compartment, and between well-oxygenated and hypoxic compartments. We recently showed that oxidative stress in the tumor stroma, due to aerobic glycolysis and mitochondrial dysfunction, is important for cancer cell mutagenesis and tumor progression. More specifically , increased autophagy/mitophagy in the tumor stroma drives a form of parasitic epithelial-stromal metabolic coupling. These findings explain why it is effective to treat tumors with either inducers or inhibitors of autophagy, as both would disrupt this energetic coupling. We also discuss evidence that glutamine addiction in cancer cells produces ammonia via oxidative mitochondrial metabolism. Ammonia production in cancer cells, in turn, could then help maintain autophagy in the tumor stromal compartment. In this vicious cycle, the initial glutamine provided to cancer cells would be produced by autophagy in the tumor stroma. Thus, we believe that parasitic epithelial-stromal metabolic coupling has important implications for cancer diagnosis and therapy, for example, in designing novel metabolic imaging techniques and establishing new targeted therapies. In direct support of this notion, we identified a loss of stromal caveolin-1 as a marker of oxidative stress, hypoxia, and autophagy in the tumor microenvironment, explaining its powerful predictive value. Loss of stromal caveolin-1 in breast cancers is associated with early tumor recurrence, metastasis, and drug resistance, leading to poor clinical outcome

    Elevated Expression of Stromal Palladin Predicts Poor Clinical Outcome in Renal Cell Carcinoma

    Get PDF
    The role that stromal renal cell carcinoma (RCC) plays in support of tumor progression is unclear. Here we sought to determine the predictive value on patient survival of several markers of stromal activation and the feasibility of a fibroblast-derived extracellular matrix (ECM) based three-dimensional (3D) culture stemming from clinical specimens to recapitulate stromal behavior in vitro. The clinical relevance of selected stromal markers was assessed using a well annotated tumor microarray where stromal-marker levels of expression were evaluated and compared to patient outcomes. Also, an in vitro 3D system derived from fibroblasts harvested from patient matched normal kidney, primary RCC and metastatic tumors was employed to evaluate levels and localizations of known stromal markers such as the actin binding proteins palladin, alpha-smooth muscle actin (α-SMA), fibronectin and its spliced form EDA. Results suggested that RCCs exhibiting high levels of stromal palladin correlate with a poor prognosis, as demonstrated by overall survival time. Conversely, cases of RCCs where stroma presents low levels of palladin expression indicate increased survival times and, hence, better outcomes. Fibroblast-derived 3D cultures, which facilitate the categorization of stromal RCCs into discrete progressive stromal stages, also show increased levels of expression and stress fiber localization of α-SMA and palladin, as well as topographical organization of fibronectin and its splice variant EDA. These observations are concordant with expression levels of these markers in vivo. The study proposes that palladin constitutes a useful marker of poor prognosis in non-metastatic RCCs, while in vitro 3D cultures accurately represent the specific patient's tumor-associated stromal compartment. Our observations support the belief that stromal palladin assessments have clinical relevance thus validating the use of these 3D cultures to study both progressive RCC-associated stroma and stroma-dependent mechanisms affecting tumorigenesis. The clinical value of assessing RCC stromal activation merits further study
    • …
    corecore